If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2=1764
We move all terms to the left:
2a^2-(1764)=0
a = 2; b = 0; c = -1764;
Δ = b2-4ac
Δ = 02-4·2·(-1764)
Δ = 14112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14112}=\sqrt{7056*2}=\sqrt{7056}*\sqrt{2}=84\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84\sqrt{2}}{2*2}=\frac{0-84\sqrt{2}}{4} =-\frac{84\sqrt{2}}{4} =-21\sqrt{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84\sqrt{2}}{2*2}=\frac{0+84\sqrt{2}}{4} =\frac{84\sqrt{2}}{4} =21\sqrt{2} $
| 6(3x-2)=-25 | | |2x+1|=x+5 | | 3x+9=7x+8 | | y=7y-12 | | 4(x-9=-16 | | 14p-6(9+3)=p+9 | | 17p-6(9+3)=p+9 | | 10x+135=5 | | m2+7=88 | | t/4=39/52 | | 3x-8xx=40 | | 6x+2(-2x-1,5)=18 | | 2x-18+18=86+18 | | 0.6^x=3 | | 6x-4=85 | | (x)÷4=105 | | x÷4=105 | | 5/3=6/n+2 | | w2+4w+3=0 | | 880-x=35.5 | | 9e=7e+10 | | 80-x=355.5 | | x/5+10=33 | | -2.9a+3.7=16.1+3.1a | | 6/14=7/n-3 | | 2x2+2x=80 | | Y=5x^2-10+14 | | X/8=x-21 | | -4(9s+5)=27 | | -6m2=-414 | | 8x2+2x=10 | | 2w+2(2w-9)=60 |